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Abstract

The fault-tolerance of analog parallel distributed implementations of a multivarlable aircraft neurocontroUer is analyzed by

simulating weight and neuron failures in a simplified scheme of analog processing based on the functional architecture of the

ETANN chip. The neural information processing is found to be only parfially distributed throughout the set of weights of the

neurocontroller synthesized with the backpropagation algorithm. Although the degree of distribution of the neural processing,

and consequently the fault-tolerance of the neurocontroller, could be enhanced using Locally Distributed Weight and Neuron

Approaches, a satisfactory level of fault-tolerance could only be obtained by retraining the degraded VLSI neurocontroller.

The possibility of maintaining neurocontrol performance and stability in the presence of single weight or neuron failures was

demonstrated through an automated retraining procedure of the ncurocontrol]er based on a pre-prograraraed choice and sequence

of the training parameters.

1. Introduction.

Recent advances in the domain of analog VLSI [1-3] have started to unveil the benefits of massively parallel

distributed implementations of neural networks. When weights and neurons are implemented as separate

physical entities, the neural information can be simultaneously processed by the weights and neurons of

the same layer in the case of fecdforward neural networks, or by all the weights and neurons in the case of

fully interconnected neural networks. Such a massive parallelism provides VLSI implementations of neural

networks with processing speeds that are unmatched by ordinary computing means. When the "synaptic"

weights are implemented as analog devices as in Ref.[2], weight degradations due to time-decay, or weight

failures due to anomalous charge leakages, may however prevent from achieving the desired neuroprocessing.

Due to their distributed structure, analog VLSI neural networks have the potential to be inherently fault-

tolerant with respect to such degradations/failures, since the degradation or failure of a weight or neuron

does not alter the neural processing by the many other weights or neurons operating in parallel. At the same

time, cross-correlations of the signal incurred through the multiple successive layers of feedforward networks,

or through the feedback interconnections of fully interconnected networks, have the potential to alter the

outcome of the overall neural processing in the presence of a single weight or neuron failure. Moreover,

analog VLSI implementations are expected to process neural information with a lesser precision than the

accuracy usually obtained with conventional digital computing architectures, due to the analog nature of

the signal.

The objective of this paper is to address major issues pertaining to the performance and the fault-tolerance

of analog VLSI neural networks in the context of control applications. Towards this objective, simulation

results are presented for potential analog VLSI implementations of a robust dynamic neurocontroller that

was previously designed for a multivariable aircraft control problem [4]. In this work, the term fault-tolerance

is defined as maintaining neurocontrol performance and stability in the presence of hardware failure(s) or

component degradation(s) of the analog VLSI implementation of the neurocontroller, whereas the term

robustness is defined as maintaining neurocontrol performance and stability in the presence of uncertainties

associated with the modelling process [4].

The paper is organized as follows. The functional structure of the neurocontroller is briefly reviewed in

Section 2 in relation to the multivariable aircraft control problem example. The computational structure of

the neurocontroller is analyzed in Section 3, with special emphasis given to estimate the degree of distribution

of the neural processing among the various weights and neurons. In Section 4, the ability of an all analog

VLSI implementation to achieve the desired neurocontrol performance is analyzed by simulating simplified

schemes of analog processing based on the functional architecture of the ETANN chip [2-3].

1T. Troudet is with Sverdrup Technology, Inc., 2001 Aerospace Parkway, Brook Park, Ohio 44142.



2. Functional Structure of the Neurocontroller.

The neural network chosen for this analysis is the dynamic neurocontroller that was designed in Ref.[4] to

provide independent control of pitch rate and airspeed responses to pilot command inputs for an integrated

airframe/propulsion longitudinal dynamics model of a modern fighter aircraft. The characteristics of the
neurocontrol are best illustrated through the functional blocks of the closed-loop evaluation architecture of

Fig. 1.

In this two control inputs - two control outputs example, the task is that of following the trajectories

generated from a linear model of the desired vehicle response dynamics to pilot command inputs [4, 5]:

= (1)

with iSEL = [VsEL, QSEL] T, where VSEL is the pilot velocity command in ft/s, and Qs_L is the pilot

longitudinal stick deflection in inches; _ = [V_, Q_]T, where the subscript "c" refers to the ideal response in

V and Q with units of ft/s and deg/s respectively; and ff,u_ is a linear function given in Refs.[4, 5]. The
vehicle outputs to be controlled are

= IV, Q]T (2)

where V is the aircraft velocity in ft/sec, and Q is the pitch rate in deg/s.

As indicated in Fig.l, the inputs to the neurocontrolter are sampled values of the measured vehicle outputs

5(t), the _racking errors g, (_) = _c(_) - 5(t), and the e_timated values of the s_ale vecior of the vehicle, _(t).

Estimates _($) of the state vector are solutions of the linearized dynamics equations of the vehicle model:

=A_+B_Ia, _,=C_; (3)

where A, B, and C are the nominal system matrices listed in Ref.[5]. In Eq.(3), _(t) is the 9-component
vector:

e = [u, w, Q,O, h, N2, N25, P6, T41B]T; (4)

u being the aircraft body axis forward velocity (ft/sec), w the aircraft body axis vertical velocity (ft/sec),
Q the aircraft pitch rate (fads/see), 0 the pitch angle (rads), h the altitude (ft), N2 the engine fan speed

(rpm), N25 the core compressor speed (rpm), P6 the engine mixing plane pressure (psia), and TdlB the

engine high pressure turbine blade temperature (°R).

The vehicle model consists of an integrated state-space representation for a modern fighter aircraft pow-

ered by a two-spool turbofan engine and equipped with a two-dimensional thrust-vectoring and reversing

nozzle. For this model, the control input vector fi_, in Eq.(3), is

_ = [WE, 6TV]T; (5)

WF being the engine main burner fuel flow rate (lbm/hr), and _TV the nozzle thrust vectoring angle (deg).
The fuel flow actuator is modelled as the second order system

GWF(_) = 500/(s _ + 60s + 500); (6)

with a maximum fuel flow rate [WFI,_ z = 10, O00lbm/hr (maximum deviation from the trim value), and a
rate limit [V_FImaz = 20, O00lbm/hr/s. The thrust vectoring actuator is modelled as the first order system

G rv( ) = 15/( + 15); (7)

with a maximum thrust vector angle 16TV[,,,_ = lOdeg (maximum deviation from the trim value), and a

rate limit I6TV],_,_ = 20deg/s. The response of the non-linear actuators, fi,(_), to the output of the dynamic

neurocontroller, _2_(t), changes the state of the vehicle model to achieve the desired tracking performance

(Fig.l).
The neurocontroller was trained in Ref.[4] to track pilot commanded trajectories that were generated

as follows. The pilot selected pitch rate was a double$ centered at a time t_ between 2.5s and 5% with the

characteristics: QSEL(t) = Qo for _ < _c; QSEL(t) = -Qo for 2t_ >_ t > _c; QSEL(t) = 0 for _ > 2t_. The

pilot selected airframe velocity was a step function characterized by VSEL(t) = 0 for t < 0, and VSEL(_) = V0

for t > 0. The maximum intensities IQ01 and IV01 of the randomly selected input commands were bounded



by Q,_z = 0.Sin and V,,_az = 20ft/sec. These commanded inputs Qs_L(t) and VsBz,(t), which represent

the frequency-content of typical pilot command inputs, were subsequently filtered over a period of 12s to

generate the commanded trajectories Qc(t) and Vc(_) [4]. Once the neural network hacl learned to track such

commanded trajectories, the neurocontroller was found to exhibit good robustness through stability margins

in phase and vehicle output gains, and maintained performance and stability in the presence of error loop
failures. A more detailed evaluation of the neurocontroller performance can be found in Ref.[4].

3. Computational Structure of the Neurocontroller.
The neurocontroller of Fig. 1 is a feedforward neural network with 13 input units (2 inputs for the measured

outputs _,, 2 inputs for the tracking errors _i, and 9 inputs for the estimate $ of the vehicle state vector),
10 neurons in the first hidden layer, 10 neurons in the second hidden layer, and 2 neurons in the output

layer, the WF-neuron and the 6TV-neuron respectively. The neuron thresholds are provided by a unit

whose output is permanently set to +l, and which is synaptically connected to all the neurons. For notation
convenience, this unit, referred to as the bia_ unit, is placed in the input layer. Neuron i of the p_a layer is

represented by n_,i, and its output by op,i. A weight connecting neuron n_,_ to neuron r_+l,_ is represented

by wp+l,j;p,_. Each neuron has the sigmoid activation function

= (8)

which limits its output to the interval [-1, +1] for any input signal. The input units simply fan-out the input
data values to the neurons of the first hidden layer. The outputs of the WF-neuron and the 6TV-neuron in

the output layer are the components of the normalized commanded control input vector

_'c(t) = [WFc(t)/[WF],,a_, 6TVc(t)/[6TV[_] T , (9)

which is applied to the actuators as indicated in Fig. 1.
To estimate the degree of distribution of the neural information processing through the set of weights

of the neurocontroller, closed-loop neurocontro! performance was evaluated for every network configuration

where a 8ingle weight or a single r_euron is removed. This was achieved through Monte Carlo simulations

of closed-loop pitch-rate/velocity responses ta pilot command inputs, after setting the value of a weight,

or forcing the output of a neuron, to zero during the entire neural computation. The simulation results

as reported in Fig.2 indicate which weights and which neurons have the most significant effect on the

neurocontroller performance.

Individ_tal Weight Contributiona _o the Neural Computation.

Among the weights connecting the input layer to the first hidden layer, w_,2;1,x3 is found to lead to

unstable pitch rate and velocity responses when it is set to zero. When w2,2;1,1s - 0, both closed-loop

responses exhibit growing oscillations that are particularly pronounced in velocity-tracking. Such a critical
interconnection is represented by a bold line in Fig.2 to indicate the loss of stability of the neurocontroller

when the interconnection is removed from the network. When w2,4;x,4 = 0, or w2,s;1,2 - 0, or w2,s;1,v - 0,

the closed-loop responses present an offset in steady-state tracking, and the corresponding !nterconnections

are represented by dashed lines in Fig.2. The other weights of the input layer individually have little effect

on the neurocontroller performance, and are represented by thin lines in Fig.2.

To further estimate the influence of the critical interconnection w2,2;1,13 on the neurocontroller perfor-

mance, closed-loop system responses were simulated for the value of w2,_;1,1s that is a fraction of the original

value ,(0) obtained from backpropagation training [4]. This fractional weight value was chosen of the
_2,2;1,13

type w_,2;1,1s/_w(°)2,2;1,13= k/(k + 1). Closed-loop simulations indicated that the unstable oscillations in pitch-

rate and velocity responses disappear if w_,2;x,:s/w(°)_,_;x, i3 > 1/2, for which values the neurocontroller
performance is found to be close-to-nominal. In anticipation of the analog implementation of Section 4, the

latter result suggests the possibility of enhancing the degree of distribution of the neural processing among

the weights of the input layer by substituting w_,_;_,is with two parallel weights of magnitude w (°) /2
2,2;1,13/ "

This method referred to as the Locally Dbtribu_ed Weight Appraach (LDWA (k)) is illustrated in Fig.3.

Likewise, applying LDWA(_=_) to the Q-input gains w_,s;_,_ and w_,_;1,7, and to the eq-input gain w_,4;1,4

would enhance the degree of distribution of the neural processing in the first layer. This would also provide a

close-to-nominal performance when a single interconnection of the input layer is removed from the network.

Among the weights interconnecting the two hidden layers, ws,1;_,s and ws, x;_,4 are essential for main-

taining neurocontrol performance and stability. Although less critical, each of the six interconnections



representedbydashedlinesin Fig.2contributesnoticeablyto theneuralcomputationfor maintainingneu-
rocontrolperformance.Asabove,selectiveapplicationof LDWAto theseinterconnectionswouldenhance
thedistributionoftheneuralprocessing,andwouldmaintainneurocontrolperformanceandstabilitywhen
ahiddenweightis removedfromthenetwork.

Amongtheinterconnectionsof theoutputlayer,w4,2;3,1 and w4,2;3,6 are essential for maintaining neu-

rocontrol performance and stability. This is illustrated for the most critical interconnection w4,2;3,1 by the
closed-loop responses in Fig.5, where the input command consists of the pitch rate pulse QSEL(t) = 0.Sin

for _ < 3see, QsEL(t) = 0 for _ > 3see, applied simultaneously with the velocity step command VSEL(t >

0) ----20ft/sec. It is noted that this input command has a different frequency content than that of the signal
used to train the neurocontroller. To estimate the effect of time-delays on the neurocontroller performance,

closed-loop responses were simulated in Fig.1 by introducing an additional 50ms delay in both neurocontrol

channels, at location a in Fig.l, for a 5ms sampling time and a delay A = 5ms at the output of the neural
state estimator.

As Shown in F_g.5, both pitch-rate and Velocity responses are highly unstable if w4,2;3,1 = 0. Control

"_ _w (°) > 2/3. The same observations apply to w4,2;3,6. Although lessstability is however regained 1i w4,2.,3,1/ 4,2;3,1 -
critical, the interconnection w4,2;3,4 represented by a dashed line in Fig.2 contributes noticeably to the neural

computation for maintaining neurocontrol performance. It could also be distributed via LDWA to enhance
the fault-tolerance of the neurocontroller to the loss of a single output weight. All other interconnections of

the output layer represented by thin lines in Fig.2 have little individual effect on the neural computation.

To further estimate the extent to which the neuro-processing is distributed among the non-critical in-

terconnections (represented by thin lines in Fig.2), the neurocontroller performance was evaluated after

removing multiple weights connecting into the WF-neuron of the output layer. Individual sets of 50 network

configurations were randomly generated by simultaneously removing n interconnections to the WF-neuron.
Only from n -5 did some closed-loop responses start to deviate significantly from the nominal responses.

As the number of removed interconnections increased from n = 1 to n = 4, the neurocontroller performance

was found in all cases to degrade gracefully within acceptable margins of the nominal responses.

The neuron thresholds of the neurocontroller trained by backpropagation in Ref.[4] have very small

magnitudes, and the neurocontroller performance remains unchanged if they are set to zero. This indicates

that these network parameters were not used by the backpropagation algorithm to provide the desired
neurocontrol performance, and that they could have been eliminated before training. As will be seen in

the next section, these parameters will however be used by the backpropagation algorithm to rearrange the

weights of the neurocontroller for maintaining control performance and stability in the presence of weight

degradation or neuron failure.
The simulation results also seem to point to some correlation between the magnitudes of the weights

and their individual contributions to the neural computation. For example, the critical weights w4,2;3,1 and

w4,2;3,G which are essential for maintaining neurocontrol stability have the largest absolute magnitudes among

the weights connecting into the $TV-neuron, (five times and twice the magnitude of the next largest weight,

respectively). Among the weights connecting ir_to neuron n3,1, the absolute magnitude of the critical weight

w3,1;2,s is also among the largest ones. Yet, weights of large magnitude are not necessarily essential to the
stability of the neurocontroller, as is the case for the weights connecting into the WF-neuron. Although the

weights connecting into the WF-neuron have much larger absolute magnitudes than those connecting into
the 6TV-neuron, the removal of any such single weight still allows for satisfactory command tracking. This

observation suggests the possibility of truncating the weights of largest absolute magnitudes without altering

the quality of the neurocontrol, and thereby enhance the performance of neurocontrol implementations by

reducing the adverse effect that weight uncertainties have on the analog processing.
Individual Neuron Contributions to _he Neural Computation.

Among the neurons of the first hidden layer, n2,2, n2,4 and n2,s lead to unstable closed-loop responses

when their output is forced to zero during the neural computation. As expected, these critical neurons

(highlighted in bold dashed lines in Fig.2) are also connected to critical interconnections (bold lines in Fig.2).

For o_,_ = 0, or o_,4 = 0, or o_,_ = 0, the system responses are similar to those for w2,2;1,13 = 0, or w3,1;2,4 = 0

or w3,I;2,_ = 0 respectively, yet with iarger devlations from the ideal responses. To further estimate the
influence of these critical neurons on the neurocontroller performance, closed-loop system responses were

simulated for neuron outputs having fractional values k/(k + 1) of the nominal outputs. The simulation
results indicated that the neurocontroller is stable if the output of n2,_ is 2/3 of its nominal value, and if the



outputs of n2,4 and n2,_ are 3/4 of their nominal values.

In anticipation of the analog implementation of Section 4, the latter result also suggests the possibility

of enhancing the degree of distribution of the neural processing among the neurons of the first hidden layer

through the Locally Distributed Neuron Approach (LDNA (k)) illustrated in Fig.4. A single neuron is replaced
by k neurons whose output voltages are fed into separate networks of interconnections. These networks of

interconnections have the same configuration as the original network of interconnectlons, but the weight
magnitudes are 1/k times the nominal values.

For o2,3 --- 0, the pitch rate and velocity responses exhibit a limit cycle behavior. This limit cycle

is removed by applying LDNA (k=2) to neuron n2,3 represented in thin dashed lines in Fig.2. Although
o2,6 -- 0 leads to a significant offset in steady-state tracking, the neurocontroller performance is close-to-

nominal if LDNA (k=2) is applied to neuron n2,6 represented in thin dashed lines in Fig.2. All the other

neurons of the first hidden layer individually contribute little to the neural computation.

Among the neurons of the second hidden layer, n3,1 and n3,6 represented in bold dashed lines in Fig.2 lead

to unstable closed-loop responses when their output is forced to zero. The system responses for o3,1 -- 0 or
o3,6 = 0 are very similar to those for w4,2;3,1 = 0 or w4,2;3,6 = 0, respectively. Close-to-nominal neurocontrol

performance is still obtained if the outputs of n3,1 and n3,6 are 2/3 and 3/4 of their respective nominal values.
Although less critical, neuron n3,4 represented in thin dashed lines in Fig.2 contributes noticeably to the

neural computation for maintaining neurocontro] performance. Close-to-nominal neurocontrol performance

can yet be achieved by applying I, DNA (k=2) to n3,4. All other neurons of the second hidden layer have little

individual effect on the neural computation.

To further estimate to which extent these non-crltlca] neurons contribute to the neurocontrol, the neu-

rocontroller performance was evaluated after removing n > 2 non-critical neurons from the second hidden

layer. For n = 2, all the system responses tested showed little deviation from the ideal trajectories. For

n = 5, nearly all system responses had a large average tracking error. The neurocontroller performance was
found to degrade gracefully as n was increased from 2 to 5.

The influence diagram of Fig.2 clearly indicates the existence of predominant datapaths in terms of

clusters of weights and neurons that are essential for maintaining neurocontrol performance and stability.

In view of Figs. 3 & 4, Fig.2 shows that the degree of distribution of the neural processing can be enhanced
through selective application of LDNA to the neurons and LDWA to the weights. This procedure is however

costly in its increase of interconnections. It also only provides a limited increase in the fault-tolerance of the

neurocontroller, since degradations or failures of practical implementations may result in situations where

a neuron output voltage gets stuck at o,,_,_ -- +1 or om,_ -- -1, or a weight deteriorates to Wma z :

+1 or W,_i,_ -- -1. Alternatives, or complementary approaches, to enhance the fault-tolerance of the

neurocontroller in the presence of such failures will therefore be proposed in the next section within the
context of the ETANN chip.

4. Performance and Fault-Tolerance Estimations of Analog Parallel Distributed
Implementations of the Neurocontroller.

In the Electrically Trainable Analog Neural Network (ETANN) [2-3], the analog input signals are first

passed to the input layer which consists of a series of buffers with an active output range from 0 to 3.5 volts.

These buffers are connected to the first hidden layer through synapse multiplier circuits. Each synapse

multiplier circuit generates a differential current that is proportional to the product of its input voltage, e.g.
a buffer output voltage, and its di_ferential weight voltage, i.e. the weight. The output differential currents

of these synapse multiplier circuits are then summed following Kirchoff's Law, and the final summation is

input to a "neuron" of the first hidden layer. The "neurons" are designed as operational amplifiers with a

variable gain, and an active output range from 0 to 3.2 volts. The neuron output voltages are subsequently

input to the synapse multiplier circuits of the second hidden layer, and the analog signal processing proceeds

likewise through the next layer, and on. The analog outputs of the neurons of the last layer are identified as

the scaled/shifted values of the commanded control input vector given in Eq.(9).
The differential weight voltage of a synapse multiplier circuit is obtained as the difference in floating gate

thresholds of a pair of EEPROM cells, the weight cell and the reference cell. Differential weight voltages are

constrained between -2.5 volts and +2.5 volts. Weight values can be changed in strength and polarity by

altering the charges of the floating gates. Such charge modifications are obtained through Fowler-Nordheim

tunneling by applying variable voltage pulses to the floating gates. As a result, "weights" can only be stored

with a limited accuracy due to hardware uncertainties. The possibility of implementing the neurocontrol



synthesizedin Ref.[4]onsuchfullyanalogparalleldistributedarchitecturesthereforedependsontheweight
accuracythatcanbetoleratedbytheneuralcomputationformaintainingcontrolperformanceandstability.
Toestimatethatdependence,theperformanceoftheneurocontrollerwasevaluatedbysimulatingtheETANN
functionat typicaloperatingconditions.

Performanee.With thesimplifiedschemeoftheETANNchipproposedin Ref.[3], the actual values of

all weights and output voltages are scaled/shifted between -1 and + I, and the neuron transfer characteristics
are simulated as:

output = tanh(gain x total_input) (10)

where the total input signal is amplified with an adjustable gain factor.

The ETANN function was simulated with the activation function given in Eq.(10) for a gain factor of

1. The absolute maximum values of each of the thirteen inputs to the neurocontroller were first estimated

through Monte Carlo simulations of closed-loop responses over a wide range of pilot input commands. These

estimates were then used to rescale the thirteen input data to the neurocontroller, and the corresponding
weights of the input layer. To simulate the input buffers of the ETANN chip, the fan-out input units described

in Section 3 were replaced by linear-thresholding units with an output range of [-1, +1]. Since large weight
values were found to be not necessarily essential to the stability of the neurocontroller, the possibility of

truncating the weights without affecting the neurocontroller performance was analyzed through Monte Carlo

simulations. In this application where the maximum actual weight value obtained in Ref.[4] is about 1.6, the

neurocontroller performance is found to be unaffected up to a weight truncation of 1, i.e. for -1 <_ w < 1.

Since analog implementations inherently have a limited resolution in the weights setting, truncating the

actual weight values within [-1, +1] will actually provide a closer-to-nominal performance of the analog
neurocontroller by reducing the effect of weight uncertainties on the neural computation.

The effect of small uncertainties in the hardware characteristics of the synapse electronic components was

simulated by random fluctuations of the weights w around their target values wt. For an equivalent n-bit

precision in the weights setting, a weight w can take any arbitrary value between wt- 1/2"-: and wt + 1/2 n- 2.

Because of the stochastic nature of the weight setting, Monte Carlo simulations of closed-loop responses were

run for many such random settings of the weights. The neurocontroller is found to be unstable for a weight
precision less than or equal to 4 bits. For 5-bit and 6-bit precisions, closediloop responses are stable but

deviate substantially from the commanded trajectories during both transients and steady-states. Although

the neurocontroller performance would be acceptable for 7-bit precision, close-to-nominal performance is

achieved for and above 8-bit precision. The statistical distribution of the tracking errors is illustrated in the

closed-loop responses of Fig.6 for 20 random settings of the weights with 8-bit precision.

It is worth mentioning that this simulation based on the neuron transfer characteristic of Eq.(10) does
not take into account the internal dynamics of the ETANN chip, in particular the settling times of the

operational amplifiers. Simulating the analog signal in the time domain would demand a numerical effort

far beyond the scope of this work. It is however clear that the dynamics of the electronic components could

influence the mode of operation of the neurocontro]ler. If the settling times of the op:amps are not small in

comparison to the response time of the closed-loop system, it may be necessary to prevent the transient phase
of the analog processing from altering the closed-loop control, for example by holding the analog signals at

the input and output of the neurochip. However, if the settling times are small in comparison to the response

time of the closed-loop system, the transient phase of the analog processing is likely to have little effect on
the closed-loop control. It is then conceivable to operate the neurochip continuously in closed-loop, with

fully analog processing from the sensors to the actuators. By reducing the time-delay encountered by the

signal from the sensors to the actuators, an El| analog'closed-loop processing would significantly reduce the

phase stability margin needed by a practical implementation of the neurocontroller to achieve the desired
control objectives, and would therefore increase the performance of the neurocontrol.

For a crude estimate of the sensitivity of the neurocontroller performance on the accuracy of the output

signal, the neuroprocessing was still simulated with the activation function (10), yet by allowing random
fluctuations of the output signal, o, around its expected value, or. The input and output data were held

in input and output buffers during 5ms periods, and the output data were randomly selected between

ot - 1/2 p-2 and ot + 1/2 p-_ for a p-bit accuracy of the output signal. Closed-loop responses were simulated

with an additional 40ms tlme-delay in both control channels, and for various output signal accuracies. With

these setting conditions,the neurocontroller performed satisfactorily both in terms of command tracking and

control requirement, for an accuracy of 8 bits or more in the output signal.



Fault-Tolerance. To analyze the toleranceof such analog VLSI neurocontrollersto degradations or

failuresoftheirelectroniccomponents, the analogprocessingwas simulatedwith the neuron transferfunction

(10)for a gain of 1,and with an 8-bitweight accuracy.

Weigh_ Degradations/Failures. The values of the stored weights will change in time because of the

dipoles resulting from charge movement between the control gate and the floating gate of the EEPROM.

These dipoles compensate for the electric field that was created by the EEPROM programming, which

offsets the voltages of both the weighX cell and the reference cell. Over several years, charge movements

would ultimately cancel each cell voltage, and all differential weight voltages would go to zero. Because this

electrical reaction is more intense as the cell voltages are high, weights of large magnitude degrade faster than

weights of small magnitude. To be on the conservative side however, closed-loop neurocontrol was simulated

for a given weight accuracy irrespective of the relative magnitudes of the weights. For a degradation leading

to a p-bit weight accuracy after time r, the weight values w_. are therefore approximated as:

sg,_(_o) ...._o_= (w0 _ )_lW0 - ) , (11)

w0 being the initial values set stochastically around the targets wt with an 8-bit accuracy, and 0(_) being
the step function 0(z) = 1 if z > 0, and 0(x) = 0 otherwise. The simulation results are illustrated in the

closed-loop responses of Fig.7 for p = 6, 7, 8 and 9, indicating small deviations from the ideal closed-loop

responses for an accuracy of 8 bits or more in the collective degradation of the weights.

Anomalous charge leakages may also occur in certain floating gates of the synapse multiplier circuits as a

result of hardware defects, and cancel the voltages of the defective EEPROM cells. Charge leakages in both

the weight cell and the reference cell of the same synapse multiplier circuit would thus cancel the differential

weight voltage (or weight) of the synapse. In the case where only one of the two EEPROM cells of a synapse

multiplier circuit would be defective, the differential weight voltage would be that of the non-defective cell

and could possibly take any value between -2.5 volts and 2.5 volts (corresponding to extremal weight values

of-1 and +1).
The effect of such weight degradations or failures on the neurocontroller performance was estimated

through Monte Carlo simulations of closed-loop responses by setting the value of a single arbitrary weight
to -1, 0, or +1. The simulation results indicated a much lower fault-tolerance of the neurocontroller when

weights degrade to -1 and +1 than when they degrade to 0. A remedy may be given by innovating training
algorithms that would maximize the degree of distribution of the neural processing throughout the entire set

of weights and neurons. Another alternative that is more in line with the scope of this work is to investigate

the possibility of maintaining neurocontrol performance in the presence of weight degradations/failures by

retraining the defective chip to achieve the desired control objectives. In view of the significant number of

training parameters and the empirical nature of the training process, it is imperative that the retraining
procedure be automated by pre-programmiag the choice and sequence of the training parameters, if it is to
truly provide faulg-tolerar_ce to an autorromou8 neurocontrol architecture.

In the proposed automated retraining procedure, the commanded trajectories to be used for retraining

are randomly generated following the method described in Section 2. The initial value of the steepest-descent

parameter is fixed and very small. The weights are updated only after backpropagating the integral of the

objective function over an entire commanded trajectory [6-7]. As learning takes place, the value of the

steepest-descent parameter is progressively increase_ in a programmed manner. This automated retraining

procedure was subsequently tested over each of the aforementioned weight failures/degradations for the

fifteen most critical weights identified in Section 3, and shown in Fig.2. The performance of the retrained

neurocontroller was found to be excellent in all 45 cases of degradations/failures except one for which the
closed-loop responses presented an offset in steady-state tracking.

The proposed automated retraining procedure was also tested over the aforementioned types of degra-

dations/failures of the thresholds of the eight most critical neurons identified in Section 3, and shown in
Fig.2. The performance of the retrained neurocontrolIerwas found to be excellent in all 24 cases of threshold

degradations/failures.

Neuron Failures. Since the neurons are implemented as high-gain operational amplifiers with a sigmoidal-

type of activation function, failures that are most likely to occur correspond to output values of-l, 0, or +1.

The same automated retraining procedure was tested over these failures for the eight most critical neurons
identified in Section 3, and shown in Fig.2. The performance of the retrained ncurocontroller was found to



beexcellentin all 24casesof neuronfailures,asillustratedbythepitch-rateresponsein Fig.8whenthe
outputof neuronn3,s is forced to +1 during the entire closed-loop operation. The pitch-rate response of

the non-retrained defective neurocontroller is also shown in Fig.8 for comparison with that of the retrained

neurocontroller. The performance increase following retraining indicates that the backpropagation algorithm

rearranges the weights to counter the effect of the defective neuron. The weights of the output layer before and

after retraining are shown in Fig.9. As expected, the strength of the interconnection w4,2;3,6 which connects

the output of the defective neuron to the 6TV-neuron is significantly attenuated after retraining. The other

weight changes are distributed among the weights connecting into the 6TV-neuron, the largest increase

being for the threshold of the 6TV-neuron. This indicates that, during the retraining, the backpropagation

algorithm also utilizes the threshold parameters to achieve the desired control objectives in the presence of

a neuron failure. The fact that the weights connecting into the WF-neuron vary very little in Fig.9 comes
with little surprise in view of the influence diagram of Fig.2.

It is noted that the loss of control stability due to chip failure can be very severe, as in the example of

Fig.8, and that real-time analysis of the actual closed-loop response of the system may not allow an early

detection of such chip failures. Alternate fault-detections could then be provided by monitoring changes

of individual weight values and individual neuron activities. A fault-detection scheme taking advantage of

the very fast forward-processing of the chip (in the order of/_s) would consist of continuously analyzing
siraula_ed closed-loop system responses to characteristic pilot input commands, e.g. the demanding pilot

input command chosen to illustrate the neurocontroller performance in Figs.5-8.

Finally, due to the global learning nature of backpropagation networks, retraining the defective neu-
rocontroller may require to estimate its performance over a broad range of command inputs that extends

beyond those actually being requested by the pilot in closed-loop control. Wether the control input to the
actuators will have to be provided by an auxilliary neurocontroller while the defective neurocontroller is

being retrained, or wether the control input can still be generated by the relearning defective neurocontroller
is therefore an important question that needs to be addressed in future works.

5. Conclusion.

The performance and fault-tolerance of analog parallel distributed implementations of a multivariable

aircraft neurocontroller were analyzed_6y using a simplified scheme of analog processing based on the func-

tional architecture of the ETANN chip. The neurocontroller was found to be only partially fault-tolerant to

weight or neuron failures. Although some fauit-to]erance could be gained by using the Locally Distributed

WeigM and Neuron Approaches, reaching a satisfactory level of fault-tolerance required retraining the de-
fective neurocontroller by an automated procedure based on a pre-programmed choice and sequence of the

training parameters:
As analog VLSI matures, greater ]earning speeds and therefore faster retraining can be expected from

analog neural networks. The objective function which contains the control objectives could be minimized
with a faster convergence algorithm to reduce the retraining time. Addressing concurrently these hardware

and software issues would help decide the feasibility of acquiring fault-tolerance in real-time, i.e. through an

automated retraining procedure within the control loop.
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